大同大學 101 學年度轉學入學考試試題

考試科目:材料科學導論 所別:材料工程學系

註:本次考試 不可以參考自己的書籍及筆記; 不可以使用字典; 不可以使用計算器。

Determine the Miller indices for the direction and plane shown in the following cubic unit cell and

Identify the two crystal structure: Body-Centered Cubic (BCC) and Face-Centered Cubic (FCC). (r. radius of sphere and a: length of cube side) (3*8%)

Crystal Structure	Atom/ unit cell	The relation	Coordination	Atomic packing			
		between rand a	number	factor (APF)			
BCC	(1)	(2)	(3)	(4)			
FCC	(5)	(6)	(7)	(8)			

- (a) The Miller indices for the close-packed planes for hexagonal close-packed (HCP) are (3%)
 - (b) The Miller indices for the close-packed planes for face-centered cubic (FCC) are (3%)
- Consider the following test specimens that were subjected to tensile testing. (2*8%) Match (a) each material to the corresponding (配合) stress-strain curve and (b) the type of deformation.

	(a)	Metal or Ceramic or Polymer	(b)	Elastic or Plastic deformation
Material I				
Material II				
Material III				
Material IV				

- Briefly explain why fine pearlite is harder and stronger than coarse pearlite, which in turn is harder and stronger than spheroidite. (5%)
- Cite two reasons why martensite is so hard and brittle. (6%)

大同大學 101 學年度轉學入學考試試題

考試科目:材料科學導論 所別:材料工程學系 第2頁註:本次考試 不可以參考自己的書籍及筆記; 不可以使用字典; 不可以使用計算器。

- 7. For a 40 wt% Sn- 60 wt% Pb alloy (Fig.1) at 150°C(300°F).
 - (a) What phase(s) is (are) present?(4%)
 - (b) What is (are) the composition(s) of the phase(s)?(8%)
 - (c) Calculate the relative amount of each phase present in terms of mass fraction and volume fraction.(10%)

(The densities of Pb:11.23 and Sn:7.24 g/cm³, respectively.)

- 8. Consider the following test specimens that were subjected to tensile testing. Label each series with the type of deformation that occurs and justify your answer.
 - (a) Match (配對) each series to the corresponding stress-strain curve. (3%)
 - (b) For which series is the mechanical deformation subject to Hooke's Law throughout the testing illustrated? (2%)

