大同大學 九十四 學年度 轉學考試 試題

考試科目:資料結構

系別:資訊工程學系

第一頁,共一頁

註:本次考試<u>不可以</u>參考書籍及筆記,<u>不可以</u>使用字典,以及<u>不可以</u>使用計算器。

Part I. O× (10, points, 2 points each)

- 1. Heapsort and Quicksort are both based on the divide-and-conquer paradigm.
- 2. Any comparison sort algorithm requires $O(n \lg n)$ comparisons in the worst case.
- 3. The n in the statement "The running time of an algorithm is $O(n^2)$." means the number of execution steps.
- 4. A minimum spanning tree for a connected graph may not be unique.
- 5. A binary tree can be an empty set, i.e., it may contains no elements.

Part II. Answer the following questions. (90 points)

- 6. (10 points) (a) Draw a *circularly linked list* with three nodes. (b) Explain why only one pointer is needed to access both ends (head and tail) of the list.
- 7. (15 points) Use *prefix* expression, *postfix* expression and *binary expression tree* to represent the following expression.

$$A = B - C * D / (E + F)$$

- 8. (20 points) (a) What operations can be applied to access the elements of a *stack*? (b) What operations can be applied to access the elements of a *queue*? (d) What operations can be applied to access the elements of a *priority queue*? (c) What are the differences in the behavior between them?
- 9. (5 points) What are the differences between a binary search tree and an AVL (high balanced) tree?
- 10. (5 points) What are the differences between sequential search and binary search?
- 11. (5 points) When does the worst-case behavior for quicksort occur? Explain.
- 12. (15 points) Consider inserting the keys 18, 41, 22, 44, 59, 32, 31, 73 into a *hash table* of length m = 13 with the hash function

$$h(k) = k \mod m$$
.

Illustrate the result of inserting these keys using

- (a) chaining,
- (b) linear probing,
- (c) double hashing with the secondary hash function $h'(k) = 7 k \mod 7$.
- 13. (5 points) Algorithm A solves a problem in $O(n \log n)$ time, while Algorithm B solves the same problem in $O(n^2)$ time. Why is the statement, "Algorithm A always performs better than Algorithm B," NOT always true?
- 14. (10 points) Transform the iterative procedure *iter* into a recursive procedure *recur.* f(i) is a function returning a logical value based on the value of i, and g(i) is a function that returns a integer value.

```
void iter(int n)
{
   int i;

   i = n;
   while(f(i) == TRUE) {
      /* any group of C statements that */
      /* does not change the value of i */
      i = g(i);
   } /* end while */
} /* end iter */
```