RKEIRE 102 2FF EBEAZFZHEAE
A E AHER PRl BN T A % 1/1 &
HARER RTULLECWHEZERER: ATUERFTH;, RATUERASES -

1. (10 points)

The figure on the right is a graph represented by an adjacency list. 1 ; 6 ‘ ; %2 ‘ ; ? 5 ‘ f

(1) Do BES (breadth first search) on the graph and show the visited vertices 2 “-—'} 6 \ H 4 H——*% 1 | [

in order (i.e., the 1% visited vertex number, the 2™ visited vertex number, the 3 3 4 } z ES ‘]

3" visited vertex number, and so on) if the starting vertex is 3. 4 ___ _‘i > H———.f 3 | I

(i1) Do DES (depth first search) on the graph and show the visited vertices 5 36 1 ; jE 5 | ; ? 1 ‘ I

in order if the starting vertex is 3. 6 ; L L
12 [4—is [

2. (20 points)
Draw the 11-item hash table resulting from hashing the keys 1, 11, 13, 22, 12, 6, 33, 39, 20, 5, 16 by using the hash function
h(k)=(2k+5) mod 11. The collisions are handled by (i) linear probing and (ii) double hashing with the secondary hash
function: A’(k)=7-(kmod 7).

3. (10 points)

State (1) the difference between stacks and queues, and (ii) the difference between queues and priority queues.

4. (5 points) 6
What are the advantages of height-balanced binary trees over normal binary search trees?

5. (15 points) 6 e

There are three common tree traversals: preorder traversal, inorder traversal, and postorder traversal. Show the o e

three traversal results of the binary tree shown on the right.
6. (10 points) 9 0

Write the worst case running time (in big-O notation) for each of the following operations: (i) searching an unordered list with

n items; (ii) searching an ordered list with n items; (iii) searching a binary search tree with n nodes; (iv) searching a height-
balanced binary search tree with n nodes; (v) searching a hash table with n keys.

7. (30 points)

The following C declarations define the node structure of a linked list.

typedef struct list node *list pointer;

data link

ptr—> 1 - 2 . e e N

struct list node {

int data;

list pointer link; };
The figure on the upper right is an example of circularly linked lists, where ptr points to the first node of the list. According to
the above C declaration, write an iterative C function, interPrintNode (list pointer ptr), and a recursive C
function, recurPrintNode (list pointer ptr), that can print the data of the nodes sequentially in a circularly
linked list. Moreover, write a C function, deleteFirstNode (list pointer* ptr), that can delete the first node of
the circularly linked list.
<PAFZEE>>

