科目名稱: 電路學

系別:電機工程學系

第 1 頁,共 1 頁

註:本次考試 不可參考書籍及筆記

不可使用計算器

不可參使用字典

- 1. Consider the circuit shown in Fig. 1, where $v_c = 3v$.
 - (a) Find the Thévenin equivalent circuit. (15%)
 - (b) Find the value of a resistor connected across a, b to have the maximum power transferred and calculate the maximum power. (5%)
- 2. Consider the network shown in Fig. 2, where $l_c = \frac{1}{2}v_2$.
 - (a) Using <u>node analysis</u> only to obtain the node matrix for the network. (10%)
 - (b) Then, calculate the voltages v_1 and v_2 . (7%)
 - (c) Determine the current i_1 . (3%)

Fig. 2

- 3. Consider the circuit shown in Fig. 3(a), where $v_s(t)$ is illustrated in Fig. 3(b) and there are no energy stored in the inductor at t = 0. (Given $e^{-1/3} = 0.717$, $e^{-1/2} = 0.607$, $e^{-1} = 0.368$, $e^{-2} = 0.135$, $e^{-3} = 0.0498$)
 - (a) Find $i_L(t)$ for 0 < t < 2 s. (10%)
 - (b) Find $i_L(t)$ for t > 2 s. (5%)
 - (c) Sketch the plot of $v_L(t)$ for t > 0. (5%)

4. Using superposition property and ac circuit analysis to find $v_C(t)$ in the steady state for the circuit in Fig. 4, where $v_s(t) = 5\cos(2 \times 10^3 t)$ V and $i_s(t) = 1$ A. (20%) (Given $\tan^{-1} 1 = 45^\circ$, $\tan^{-1} 2 = 63.4^\circ$, $\tan^{-1} 3 = 71.6^\circ$, $\tan^{-1} \frac{1}{2} = 26.6^\circ$, $\tan^{-1} \frac{1}{3} = 18.6^\circ$)

5. Using Laplace transform method, determine $v_C(t)$ for t > 0 for the circuit shown in Fig. 5, where $v_s(t) = e^{-t}u(t)$ V, $v_C(0) = 2$ V, and $i_L(0) = 6$ A, where u(t) is an unit step function. (20%)