大同大學 九十二 學年度 轉學考試 試題

考試科目:電子學

系別:電機工程學系

共 1/1 頁

註:本次考試 不可以参考自己的書籍及筆記; 不可以使用字典; 可以使用計算器。

BJT: $|V_{BE}|$ (active)=0.7V, $|V_{BE}|$ (sat)=0.8V, $|V_{CE}|$ (sat)=0.2V; MOSFET: $|V_t|$ threshold voltage.

1. For the circuit in Fig. p1, $R_1 = 10 K\Omega$, $R_2 = 1 K\Omega$, calculate V_B and V_E for $V_I = 3V$, and -5V. Both BJTs have $\beta = 100.(20\%)$

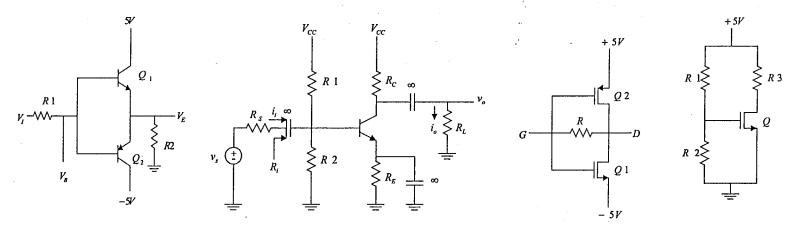


Fig. p1

Fig. p2,

Fig. p3

Fig. p4

- 2. For the circuit shown in Fig. p2, let V_{CC} =9V, R_1 =27 $K\Omega$, R_2 =15 $K\Omega$, R_E =1.2 $K\Omega$, R_C =2.2 $K\Omega$. The BJT has β =100 and Early voltage V_A =100V. (in part(a), neglect Early effect)
 - (a). Calculate the dc bias current I_E . (10%)
 - (b). If the amplifier operates between a source for which $R_s = 10 \, K\Omega$ and load $R_L = 2 \, K\Omega$, calculate the input resistance R_i , the voltage gain v_o/v_s , and the current gain i_o/i_s . (15%)
- 3. The MOSFETs in the circuit of Fig. p3 are matched, with $\mu_n C_{ox} (\frac{W}{L})_1 = \mu_p C_{ox} (\frac{W}{L})_2 = 50 \frac{\mu A}{V^2}$ and $|V_t| = 2V$, the resistance $R = 10M\Omega$
 - (a). For G and D open, calculate the drain current I_{D1} and I_{D2} ? (8%)
 - (b). Through a large coupling capacitor, G is driven from a source v_i having a resistance of $1 M\Omega$, calculate the voltage gain v_d / v_i , assuming both MOSFETs with $\frac{1}{|\lambda|} = |V_A| = 180V$.(12%)
- 4. For the circuit in Fig. p4, nMOS with $V_t = 1$ V and $\mu_n C_{ox} \frac{W}{L} = 0.2 \frac{mA}{V^2}$; $R_1 = 30 K\Omega$, $R_2 = 20 K\Omega$, $R_3 = 20 K\Omega$, determine the transition point parameters $V_{GS,t}$ and $I_{D,t}$. (Here, transition point means: $V_{GS} < V_{GS,t}$, Q in the saturation region; $V_{GS} > V_{GS,t}$, Q in linear region.) (13%)
- 5. (a). Draw the CMOS inverter circuit and indicate the pMOS and nMOS. (4%)
 - (b). Sketch the CMOS inverter VTC, i.e. V_O vs V_I plot and indicate V_{IL} , V_{IH} , V_{OH} , V_{OL} . Define the noise margin NM_H and NM_L . (12%)
 - (c) Draw the two inputs CMOS NAND and NOR circuits and indicate pMOS and nMOS clearly. (8%)