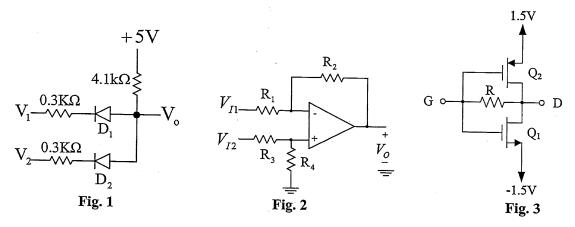
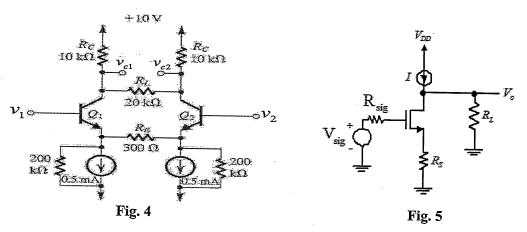
## 大同大學 102 學年度 轉學入學考試試題


考試科目:電子學

所別:電機工程學系


第 1/1 頁

註:本次考試 不可以參考自己的書籍及筆記; 不可以使用字典; 可以使用計算器。

1. In Fig.1, diode cut-in voltage  $V_{D0}=0.6V$ , diode resistance  $r_D=0\Omega$ , for the following cases, calculate the output voltage  $V_0$ . (a)  $V_1=V_2=5V$  (b)  $V_1=5V$ ,  $V_2=0V$  (c)  $V_1=V_2=0V$  (18%)



- 2. (a). For the ideal OP in Fig. 2, derive the output  $V_{\rm O}$  in terms of  $V_{\rm II}, V_{\rm I2}$  and resistors. (12%)
  - (b). To relize the circuit as a difference amplifier, i.e.  $V_0 = A(V_{12} V_{11})$ , derive the relationship among the resistors  $R_1$ ,  $R_2$ ,  $R_3$ , and  $R_4$ , define the gain factor A. (8%)
- 3. The MOSFETs in the circuit of Fig. 3 are matched, having  $\mu_n C_{ox}(W/L)_n = \mu_p C_{ox}(W/L)_p = 1 mA/V^2$ ,  $V_m = \left|V_{tp}\right| = 0.5V$ , and the resistance R=1M $\Omega$ 
  - (a). For G and D open, calculate the dc voltage at G ( $V_G$ ) and dc drain current  $I_{D1}(Q_1)$  and  $I_{D2}(Q_2)$ . (8%)
- (b). For finite  $r_o$  ( $\frac{1}{|\lambda|} = |V_A| = 20V$ , for both n and p MOS), draw the small-signal equivalent circuit, calculate the voltage gain ( $v_d/v_g$ ) from G to D and find the input resistance ( $R_{in}$ ) at G.(12%)
- 4. Refer to Fig. 4, BJT  $\beta$ =100, for the differential mode,  $v_1 = 0.5v_{id}$ ,  $v_2 = -0.5v_{id}$ , draw the half circuit (3%), calculate the voltage gain  $A_d = \frac{v_{c2} v_{c1}}{v_{id}}$  (12%) and input resistance  $R_{id}$ .(5%)



- 5. (a). For the circuit in Fig. 5, the coupling capacitances are not shown, the current source is ideal, MOS  $r_o = \infty$ , derive the midband voltage gain  $A_M = V_o/V_{sig}$ . (10%)
  - (b). Draw the small-signal circuit including  $C_{gs}$  and  $C_{gd}$ , use OCTC (open circuit time constant) method to derive the time constants  $\tau_{gs}$ ,  $\tau_{gd}$ , for  $C_{gs}$ ,  $C_{gd}$ . (8%%)
  - (c). Follows part (a),(b) write an expression for the transfer function of the voltage gain  $A(s)=V_o/V_{sig}$ , define the pole frequency  $(\omega_p)$  in terms of  $\tau_{gs}$  and  $\tau_{gd}$ ... (4%)