大同大學 九十三 學年度 轉學考試 試題

考試科目:化學 系別:化學工程學系

第 1 頁,共 1 頁

註:本次考試不可以參考自己的書籍及筆記; 不可以使用字典; 屬可以使用計算器。

- A car is advertised as having a gasoline mileage of 15 km/L. Convert this rating to miles per gallon of gasoline? (1m = 1.094yd, 1760yd = 1miles, 1gallon = 4qt, 1.06qt = 1L)
- 2. Give the (English and Chinese) names of the metals that correspond to the following symbols: Sn, Pt, Co, Ni, Mg, Ba, K, Na, H, O? (10%)
- 3. Briefly describe two methods one might use to find the molar mass of a newly synthesized gas for which a molecular formula was not known? (5%)
- 4. Given the following data:

 $H_2(g) + 1/2 O_2(g) \rightarrow H_2O(1)$, $\triangle H = -285.8 \text{ kJ}$

 $N_2O_3(g) + H_2O(1) \rightarrow 2 HNO_3(1), \triangle H = -76.6 kJ$

 $1/2 \text{ N}_2(g) + 3/2 \text{ O}_2(g) + 1/2 \text{ H}_2(g) \rightarrow \text{HNO}_3(1), \triangle H = -174.1 \text{ kJ}$

Calculate the \triangle H for the reaction: $2 \text{ N}_2(g) + 5 \text{ O}_2(g) \rightarrow 2 \text{ N}_2 \text{O}_5(g)$? (10%)

- 5. (1) Explain why the first ionization energies tends to increase as one proceeds from left to right across a period in the chemical periodic table?
 - (2) Why is the first ionization energy of aluminum lower than that of magnesium? (10%)
- 6. Consider the following reaction: $H_2(g) + O_2(g) \rightarrow H_2O_2(g)$, $\triangle H = -153$ kJ Given that the H_2 bond energy is 432 kJ/mol, the O_2 bond energy is 495 kJ/mol, and the OH bond energy is 467 kJ/mol, estimate the bond energy for the O—O (oxygen-oxygen) single bond? (5%)
- 7. Which one of the following groups is predicted by the molecular orbital model to be the most stable diatomic species? (a) H₂⁺, H₂, H₂⁻, H₂²⁻; (b) He₂²⁺, He₂⁺, He₂ (5%)
- 8. Calcium has a cubic closest packed structure as a solid. Assuming that calcium has an atomic radius of 197 pm, calculate the density of solid calcium. (Ca = 40.08 g/mol) (10%)
- 9. In lab you need to prepare at least 100 ml of each of the following solutions. Explain how you would proceed using the given information. (10%)
 - (a) 2.0 m KCl in water(density of water=1.00 g/cm³; K=39.1g/mol, Cl=35.45g/mol)
 - (b) 25% NaOH by mass in CH₃OH(density of CH₃OH=0.79 g/cm³;Na=23g/mol)
- 10. A first order reaction $A \rightarrow P$ (rate = $-dC_{\Lambda}/dt = kC_{\Lambda}$) is 38.5% complete in 480 s. (seconds) (a) Calculate the rate constant k = ?

(b) What is the value of the half-life $t_{1/2} = ?$ (10%)

- 11. At 2200°C, K_P = 0.050 for the reaction: N₂(g) + O₂(g) → 2NO(g) (10%) What is the partial pressure of NO in equilibrium with N₂ and O₂ that were placed in a constant volume flask at initial pressures of 0.80 atm and 0.20 atm, respectively?
- 12. Calculate the pH values of the following solutions: (a) 0.10 M HNO₃(aq)?; (b) 1.0 x 10^{-10} M HCl(aq)?; (c) 0.010 M H₂SO₄(aq)? (For H₂SO₄: $K_{a1} = \infty$, $K_{a2} = 1.2 \times 10^{-2}$) (10%)